Ceramic

The word ceramic is derived from the Greek word κεραμικός (keramikos). The term covers inorganic non-metallic materials whose formation is due to the action of heat. Up until the 1950s or so, the most important of these were the traditional clays, made into pottery, bricks, tiles and are like, along with cements and glass. Clay based ceramics are described in the article on pottery. A composite material of ceramic and metal is known as cermet. The word ceramic can be an adjective, and can also be used as a noun to refer to a ceramic material, or a product of ceramic manufacture. Ceramics is a singular noun referring to the art of making things out of ceramic materials. The technology of manufacturing and usage of ceramic materials is part of the field of ceramic engineering. Many ceramic materials are hard, porous and brittle. The study and development of ceramics includes methods to mitigate problems associated with these characteristics, and to accentuate the strengths of the materials as well as to investigate novel applications. The American Society for Testing and Materials (ASTM) defines a ceramic article as “an article having a glazed or unglazed body of crystalline or partly crystalline structure, or of glass, which body is produced from essentially inorganic, non-metallic substances and either is formed from a molten mass which solidifies on cooling, or is formed and simultaneously or subsequently matured by the action of the heat.” Classification of technical ceramics Technical ceramics can also be classified into three distinct material categories: Oxides: Alumina, zirconia Non-oxides: Carbides, borides, nitrides, silicides Composites: Particulate reinforced, combinations of oxides and non-oxides. Each one of these classes can develop unique material properties Examples of technical ceramics Barium titanate (often mixed with strontium titanate) displays ferroelectricity, meaning that its mechanical, electrical, and thermal responses are coupled to one another and also history-dependent. It is widely used in electromechanical transducers, ceramic capacitors, and data storage elements. Grain boundary conditions can create PTC effects in heating elements. Bismuth strontium calcium copper oxide, a high-temperature superconductor Boron carbide (B4C), which is used in ceramic plates in some personnel, helicopter and tank armor. Boron nitride is structurally isoelectronic to carbon and takes on similar physical forms: a graphite-like one used as a lubricant, and a diamond-like one used as an abrasive. Ferrite (Fe3O4), which is ferrimagnetic and is used in the magnetic cores of electrical transformers and magnetic core memory. Lead zirconate titanate is another ferroelectric material. Magnesium diboride (MgB2), which is an unconventional superconductor. Silicon carbide (SiC), which is used as a susceptor in microwave furnaces, a commonly used abrasive, and as a refractory material. Silicon nitride (Si3N4), which is used as an abrasive powder. Steatite is used as an electrical insulator. Uranium oxide (UO2), used as fuel in nuclear reactors. Yttrium barium copper oxide (YBa2Cu3O7-x), another high temperature superconductor. Zinc oxide (ZnO), which is a semiconductor, and used in the construction of varistors. Zirconium dioxide (zirconia), which in pure form undergoes many phase changes between room temperature and practical sintering temperatures, can be chemically "stabilized" in several different forms. Its high oxygen ion conductivity recommends it for use in fuel cells. In another variant, metastable structures can impart transformation toughening for mechanical applications; most ceramic knife blades are made of this material. Properties of ceramics Mechanical properties Ceramic materials are usually ionic or covalently-bonded materials, and can be crystalline or amorphous. A material held together by either type of bond will tend to fracture before any plastic deformation takes place, which results in poor toughness in these materials. Additionally, because these materials tend to be porous, the pores and other microscopic imperfections act as stress concentrators, decreasing the toughness further, and reducing the tensile strength. These combine to give catastrophic failures, as opposed to the normally much more gentle failure modes of metals. These materials do show plastic deformation. However, due to the rigid structure of the crystalline materials, there are very few available slip systems for dislocations to move, and so they deform very slowly. With the non-crystalline (glassy) materials, viscous flow is the dominant source of plastic deformation, and is also very slow. It is therefore neglected in many applications of ceramic materials. Electrical properties Semiconductors There are a number of ceramics that are semiconductors. Most of these are transition metal oxides that are II-VI semiconductors, such as zinc oxide. While there is talk of making blue LEDs from zinc oxide, ceramicists are most interested in the electrical properties that show grain boundary effects. One of the most widely used of these is the varistor. These are devices that exhibit the property that resistance drops sharply at a certain threshold voltage. Once the voltage across the device reaches the threshold, there is a breakdown of the electrical structure in the vicinity of the grain boundaries, which results in its electrical resistance dropping from several megohms down to a few hundred ohms. The major advantage of these is that they can dissipate a lot of energy, and they self reset — after the voltage across the device drops below the threshold, its resistance returns to being high. This makes them ideal for surge-protection applications. As there is control over the threshold voltage and energy tolerance, they find use in all sorts of applications. The best demonstration of their ability can be found in electrical substations, where they are employed to protect the infrastructure from lightning strikes. They have rapid response, are low maintenance, and do not appreciably degrade from use, making them virtually ideal devices for this application. Semiconducting ceramics are also employed as gas sensors. When various gases are passed over a polycrystalline ceramic, its electrical resistance changes. With tuning to the possible gas mixtures, very inexpensive devices can be produced. Superconductivity Under some conditions, such as extremely low temperature, some ceramics exhibit superconductivity. The exact reason for this is not known, but there are two major families of superconducting ceramics. Ferroelectricity and supersets Piezoelectricity, a link between electrical and mechanical response, is exhibited by a large number of ceramic materials, including the quartz used to measure time in watches and other electronics. Such devices use both properties of piezoelectrics, using electricity to produce a mechanical motion (powering the device) and then using this mechanical motion to produce electricity (generating a signal). The unit of time measured is the natural interval required for electricity to be converted into mechanical energy and back again. The piezoelectric effect is generally stronger in materials that also exhibit pyroelectricity, and all pyroelectric materials are also piezoelectric. These materials can be used to inter convert between thermal, mechanical, and/or electrical energy; for instance, after synthesis in a furnace, a pyroelectric crystal allowed to cool under no applied stress generally builds up a static charge of thousands of volts. Such materials are used in motion sensors, where the tiny rise in temperature from a warm body entering the room is enough to produce a measurable voltage in the crystal. In turn, pyroelectricity is seen most strongly in materials which also display the ferroelectric effect, in which a stable electric dipole can be oriented or reversed by applying an electrostatic field. Pyroelectricity is also a necessary consequence of ferroelectricity. This can be used to store information in ferroelectric capacitors, elements of ferroelectric RAM. The most common such materials are lead zirconate titanate and barium titanate. Aside from the uses mentioned above, their strong piezoelectric response is exploited in the design of high-frequency loudspeakers, transducers for sonar, and actuators for atomic force and scanning tunneling microscopes. Positive thermal coefficient Increases in temperature can cause grain boundaries to suddenly become insulating in some semiconducting ceramic materials, mostly mixtures of heavy metal titanates. The critical transition temperature can be adjusted over a wide range by variations in chemistry. In such materials, current will pass through the material until joule heating brings it to the transition temperature, at which point the circuit will be broken and current flow will cease. Such ceramics are used as self-controlled heating elements in, for example, the rear-window defrost circuits of automobiles. At the transition temperature, the material's dielectric response becomes theoretically infinite. While a lack of temperature control would rule out any practical use of the material near its critical temperature, the dielectric effect remains exceptionally strong even at much higher temperatures. Titanates with critical temperatures far below room temperature have become synonymous with "ceramic" in the context of ceramic capacitors for just this reason.

No comments: